

Solvent Effect on Ruthenium Catalyzed Dihydroxylation

Tony K. M. Shing* and Eric K. W. Tam

Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong.

Received 18 November 1998; revised 6 January 1999; accepted 11 January 1999

Abstract: The effect of different solvents on flash dihydroxylation is compared and for the first time, the replacement of ethyl acetate with acetone was shown to give a successful, *catalytic cis*-dihydroxylation of the alkene moiety in cholesteryl acetate and the ruthenium catalytic cycle could be maintained by methanesulfonamide in the absence of acetonitrile. © 1999 Elsevier Science Ltd. All rights reserved.

Recently, we have disclosed a catalytic ruthenium system for the rapid oxidation of alkenes to *vic*-diols. This novel *cis*-dihydroxylation protocol was coined 'flash dihydroxylation'. In this communication, we report our studies of the influence of solvents on flash dihydroxylation and demonstrate that the first successful, catalytic *cis*-dihydroxylation of cholesteryl acetate could be accomplished using acetone-MeCN-H₂O solvent system in a ratio of 3:3:1, respectively.

Initially, the ruthenium catalyzed flash dihydroxylation was discovered with a two-phase solvent system containing CCl₄-MeCN-H₂O in a respective ratio of 3:3:1. Subsequently we found that ethyl acetate-MeCN-H₂O in the same solvent ratio (Method A) gave even better yields of diols. This is probably due to the better solubility of the resultant diols in ethyl acetate than in CCl₄. On the other hand, the higher solubility of the resultant diols in water than in the organic solvent is not desirable because that leads to competitive glycol cleavage reactions by NaIO₄ in the aqueous layer and hence to lower yields. For example, the reaction of 1-decene or cyclohexene in CCl₄-MeCN-H₂O only furnished the corresponding cleavage products (carbonyl compounds) in 28% and 40% yields, respectively, and no desired diols were detected or isolated (c.f. Table 1, entries 1 and 2). In view of this, we wanted to investigate further the influence of different solvents on flash dihydroxylation. However, RuO₄ is a vigorous oxidant,³ and thus the number of solvents that can be used is limited. The most suitable common organic solvents are CCl₄, CHCl₃, acetone, and ethyl acetate, all of which resist oxidation by RuO₄.

An alternative solvent system of MeCN-H₂O in a ratio of 6:1 (Method B) was found to complement the

An alternative solvent system of MeCN-H₂O in a ratio of 6:1 (Method B) was found to complement the existing solvent system (Method A) and gave better results in most cases (see entries 2-5 in Table 1). It is important to note that MeCN prevents catalyst inactivation and is crucial for the increased effectiveness and reliability of the catalytic RuO₄ oxidations.⁴ The drawback of this solvent system is that it is homogenous and hence promotes glycol cleavage reactions.

Recently, Sica and co-workers have studied the oxidation of a number of tri- and tetra-substituted steroidal alkenes with *stoichiometric* ruthenium tetraoxide and observed that the reaction products consisted of a mixture of α -ketols, 1,2-diols and sometimes fission products.⁵⁻⁷ The example that gave the best yield of *vic*-diol is shown in Figure 1 in which cholesteryl acetate was treated with a stoichiometric amount of RuO₄ (prepared from RuO₂ and NaIO₄) in aqueous acetone to give ketol 1 and diol 2 in 60% and 32% yields, respectively.

When Method A or B was applied to cholesteryl acetate, the reaction stopped after 2 turnovers because it formed a rather stable complex with ruthenium. This problem was also encountered in the OsO₄ catalyzed dihydroxylation of cholesteryl acetate.⁸ Replacement of the ethyl acetate with acetone (Method C) gratifyingly could effect the ruthenium dihydroxylation catalytically (entry 7) and gave good yields of the vicinal diol 2. However, this method gave poorer yields of diols for other alkenes (see entries 1-6) and the byproducts are mostly carbonyl compounds. This is probably attributable to the facile glycol cleavage of the resultant diols in the homogeneous solution of Method C.

Interestingly, it was observed for the first time that the catalytic cycle could be maintained by replacing the MeCN with one millimole of methanesulfonamide (Method D). However, the yields of diols from electron deficient alkenes were disappointing (see entries 4-6). Methanesulfonamide had been used to hydrolyze the tetrasubstituted osmium(VI) ester complex in osmium tetraoxide catalyzed dihydroxylation reactions.⁹ Presumably, the ruthenium(VI) ester was formed initially and then broken down by the methanesulfonamide to give the diol. The ruthenium species was then oxidatively regenerated by NaIO₄ for dihydroxylation. Although this method gave 12% yield of the cholesteryl diol 2, unfortunately, combining methanesulfonamide with ethyl acetate-MeCN-H₂O (3:3:1, Method A) did not show any improvement of the reaction even for the tetra-substituted

In conclusion, the first successful catalytic dihydroxylation of cholesteryl acetate was realized using acetone-MeCN-H₂O in a ratio of 3:3:1 as the solvent system and methanesulfonamide was shown to be able to replace MeCN in maintaining the ruthenium catalytic cycle.

Table 1^a Solvent Effect on Ruthenium Catalyzed Dihydroxylation.

	alken	diol				
Entry	Alkene	Time (min)	<u>A</u> %	B %	C %	<u>D</u> %
1	()	0.5	67	54	53	56
2		3	58	72	55	54
3	=0	3	36	51	32	41
4 .	CO₂E	t 3	55	69	50	30
5) co	2 ^{Et} 3	77	84	75	44

turnovers furnovers ^aAll the reactions were performed in 1 mmol of alkene, 0.07 mmol RuCl₃*3 H₂O and 1.5 mmol NaIO₄. Solvent sysem of Method A is (EtOAc-MeCN-H2O, 3:3:1). Solvent sysem of Method B is (MeCN-H2O, 6:1). Solvent sysem of Method C is (acetone-MeCN-H₂O, 3:3:1). Method D is 1 mmol of methanesulfonamide in solvent system (EtOAc-H2O, 6:1). % indicates the percentage yield of the diol product.

stopped

after 2

stopped

after 2

80

68 diol

10 ketol

30

12 diol

84 recovery

We thank the Chinese University of Hong Kong for a Postdoctoral Fellowship (to Eric K. W. Tam).

REFERENCES

- email address: tonyshing@cuhk.edu.hk
- Shing, T. K. M.; Tai, V. W.-F.; Tam, E. K. W. Angew. Chem., Int. Ed. Engl. 1994, 33, 2312.
- 2 Shing, T. K. M.; Tai, V. W.-F.; Tam, E. K. W.; Chung, I. H. F.; Jiang, Q. Chem. Eur. J. 1996, 2, 142.
- Courtney, J. L. In Organic Syntheses by Oxidation with Metal Compounds; Mijs, W. J.; De Jonge, C. R. H. I., Eds.; Academic Press: New York and London, 1986; pp 445-467.
- 4 Sharpless K. B.; Williams, D. R. Tetrahedron Lett. 1975, 35, 3045.
- Piccialli, V.; Smaldone, D. M. A.; Sica, D. Tetrahedron 1993, 49, 4211. Notaro, G.; Piccialli, V.; Sica, D.; Smaldone, D. Tetrahedron 1994, 50, 4835. Piccialli, V.; Sica, D. Smaldone, D. Tetrahedron Lett. 1994, 35, 7093.
- Private communication with Professor K. B. Sharpless.
- Sharpless K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768.